Investigadores de la Universidad Carlos III de Madrid (UC3M) han desarrollado un sistema basado en técnicas de visión artificial que permite realizar un análisis automático mediante microscopía para poder caracterizar y describir el comportamiento de las células que aparecen en las imágenes.
Estas nuevas técnicas desarrolladas por el equipo de ingenieros de la UC3M se han utilizado para realizar medidas en tejidos vivos en una investigación realizada con científicos del Centro Nacional de Investigaciones Cardiovasculares (CNIC), ha informado la Universidad en un comunicado.
Gracias a ello, el equipo descubrió que los neutrófilos (un tipo de células inmunes) muestran diferentes conductas en la sangre durante los procesos inflamatorios y han identificado que una de ellas, provocada por la molécula Fgr, está asociada al desarrollo de enfermedades cardiovasculares.
Este trabajo, publicado recientemente en la revista Nature, podría permitir el desarrollo de nuevos tratamientos para minimizar las secuelas ocasionadas por los infartos de miocardio. En el estudio han participado investigadores de la Fundación Vithas, de la Universidad de Castilla La Mancha, la Agencia de Ciencia y Tecnología de Singapur (ASTAR) y la Universidad de Harvard (EEUU), entre otros centros.
«Nuestra contribución consiste en el diseño y desarrollo de un sistema completamente automático, basado en técnicas de visión artificial, que permite caracterizar las células objeto de estudio mediante el análisis de vídeos capturados por los biólogos a través de la técnica de microscopía intravital», indica uno de los autores de este trabajo, el catedrático Fernando Díaz de María, responsable del Grupo de Procesado Multimedia de la UC3M.
Así, se han realizado medidas automáticas de la forma, tamaño, movimiento y posición respecto al vaso sanguíneo de unos pocos miles de células, en comparación con los estudios biológicos tradicionales que se suelen sustentar en análisis de unos pocos cientos de células caracterizadas manualmente. De esta forma, se ha podido llevar a cabo un análisis biológico más avanzado y con mayor significancia a nivel estadístico.
Este nuevo sistema tiene diversas ventajas, según los investigadores, en términos de tiempo y precisión. En general, «no resulta viable mantener a un biólogo experto segmentando y siguiendo células en vídeos durante meses. En cambio, por dar una idea aproximada (porque depende de la cantidad de células y profundidad del volumen 3D), nuestro sistema tarda apenas un cuarto de hora en analizar un vídeo de 5 minutos», ha señalado otro de los investigadores, Ivan González Díaz, profesor titular del departamento de Teoría de la Señal y Comunicaciones de la UC3M.